En atención a la creciente preocupación sobre la confianza en...
Leer más
The Combination of Chest Computed Tomography and Standard Electrocardiogram Provides Prognostic Information and Pathophysiological Insights in COVID-19 Pneumonia
1Cardiological Center, Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy
Academic Editor: Gaetano Nucifora
J. Clin. Med. 2021, 10(14), 3031; https://doi.org/10.3390/jcm10143031
Received: 23 May 2021 / Revised: 1 July 2021 / Accepted: 2 July 2021 / Published: 7 July 2021
(This article belongs to the Special Issue Clinical Applications of Cardiac Imaging Techniques in Patients with Ventricular Arrhythmias)
Abstract
Keywords: COVID-19; chest CT; ECG
1. IntroductionSeveral recent studies have unveiled the great heterogeneity of COVID-19 pneumonia, ranging from mild, rapidly improving symptoms to a devastating accelerated decline of lung function [1,2,3]. In particular, different phenotypes have been described based on respiratory parameters, the presence of dead space, and coagulation markers [4,5]. Grasselli and coworkers described a subgroup of mechanically ventilated patients with a distinct respiratory phenotype characterized by low static lung compliance, increased dead space, high D-dimer concentrations, and a poor short-term prognosis [6]. Autopsy studies specified that this phenotype involves both the pulmonary parenchyma and its circulation, showing pulmonary vascular endothelialitis, thrombosis, and angiogenesis [7]. Notably, this “vascular phenotype” is not necessarily the result of pneumonia associated with thromboembolic events; more frequently, it is an intrinsic phenomenon of thrombosis in situ. Identification of the vascular phenotype has clinical significance. Although several clinical, laboratory, and imaging variables have been tested as prognosticators [8,9,10,11], few data are available on the use of a simple and widespread test such as standard electrocardiogram (ECG) [12,13,14].
The aim of this study was to explore the combined role of two simple examinations in predicting short-term prognosis in patients with COVID-19 pneumonia—namely, chest computed tomography (CT) scan and ECG performed at admission—and to draw pathophysiological insights on this heterogeneous condition.
2. Methods
2.1. Study Setting and Patient Cohort
This study is part of the ELCOVID project, a large multicenter project aimed at assessing the standard ECG features of a large cohort of consecutive COVID-19 patients hospitalized within an endemic area of Italy. It was approved by the local Ethics Committee (identifier: 385/2020/Oss/AOUFe) and is registered on ClinicalTrials.gov (identifier: NCT04367129). Four hospitals of the Emilia Romagna region (Arcispedale S. Anna, Ferrara; Ospedale Guglielmo da Saliceto, Piacenza; Ospedale Civile di Castel San Giovanni, Piacenza; and Maria Cecilia Hospital, Cotignola, Ravenna) took part in the study. The aim was to test the combined role of chest CT scan and standard ECG, performed at admission, in predicting the 30-day prognosis of patients with COVID-19-related pneumonia. We analyzed the chest CT scan and ECG performed at hospital admission of consecutive COVID-19 patients admitted between 20 March and 4 April 2020. The inclusion criteria were age > 18 years, COVID-19 confirmed by RNA detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at pharyngeal swab, radiologic evidence of definite COVID-19-related pneumonia, and chest CT scan and 12-lead surface ECG performed at hospital admission. CT scan and ECG were both performed on day 1 of hospitalization in all the patients. Patients were excluded if chest CT scan and 12-lead ECG were not both performed on the same day.
2.2. Data Collection
2.3. Outcome and Prognostic Endpoint
2.4. Statistical Analysis
3. Results
3.1. Patient Population
3.2. Chest CT and ECG Findings
3.3. Prognostic Analysis
4. Discussion
4.1. Pathophysiological Insights
4.2. Clinical Implications
5. Limitations
6. Conclusions
AUC | area under the curve |
BIC | Bayesian information criterion |
COVID-19 | coronavirus disease-2019 |
CT | computed tomography |
ECG | electrocardiogram/electrocardiographic |
HR | hazard ratio |
IQR | interquartile range |
RBBB | right bundle branch block |
RV | right ventricular |
References
-
Coronavirus Disease 2019 (COVID-19). History and Exam. BMJ. 2020. Available online: https://bestpractice.bmj.com/topics/engb/3000168/history-exam (accessed on 21 August 2020).
-
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef]
-
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
-
Gattinoni, L.; Chiumello, D.; Caironi, P.; Busana, M.; Romitti, F.; Brazzi, L.; Camporota, L. COVID-19 pneumonia: Different respiratory treatments for different phenotypes? Intensive Care Med. 2020, 46, 1099–1102. [Google Scholar] [CrossRef] [PubMed]
-
Rello, J.; Storti, E.; Belliato, M.; Serrano, R. Clinical phenotypes of SARS-CoV-2: Implications for clinicians and researchers. Eur. Respir. J. 2020, 55, 2001028. [Google Scholar] [CrossRef]
-
Grasselli, G.; Tonetti, T.; Protti, A.; Langer, T.; Girardis, M.; Bellani, G.; Laffey, J.; Carrafiello, G.; Carsana, L.; Rizzuto, C.; et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: A multicentre prospective observational study. Lancet Respir. Med. 2020, 8, 1201–1208. [Google Scholar] [CrossRef]
-
Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
-
Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811–818. [Google Scholar] [CrossRef]
-
Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef]
-
Argulian, E.; Sud, K.; Vogel, B.; Bohra, C.; Garg, V.P.; Talebi, S.; Lerakis, S.; Narula, J. Right Ventricular Dilation in Hospitalized Patients with COVID-19 Infection. JACC Cardiovasc. Imaging 2020, 13, 2459–2461. [Google Scholar] [CrossRef]
-
Mahmoud-Elsayed, H.M.; Moody, W.E.; Bradlow, W.M.; Khan-Kheil, A.M.; Hudsmith, L.E.; Steeds, R.P. Echocardiographic Findings in Covid-19 Pneumonia. Can. J. Cardiol. 2020, 36, 1203–1207. [Google Scholar] [CrossRef]
-
McCullough, S.A.; Goyal, P.; Krishnan, U.; Choi, J.J.; Safford, M.M.; Okin, P.M. Electrocardiographic Findings in Coronavirus Disease-19: Insights on Mortality and Underlying Myocardial Processes. J. Cardiac Fail. 2020, 26, 626–632. [Google Scholar] [CrossRef]
-
Bertini, M.; Ferrari, R.; Guardigli, G.; Malagù, M.; Vitali, F.; Zucchetti, O.; D’Aniello, E.; Volta, C.A.; Cimaglia, P.; Piovaccari, G.; et al. Electrocardiographic features of 431 consecutive, critically ill COVID-19 patients: An insight into the mechanisms of cardiac involvement. EP Eur. 2020, 22, 1848–1854. [Google Scholar] [CrossRef]
-
Pavri, B.B.; Kloo, J.; Farzad, D.; Riley, J.M. Behavior of the PR interval with increasing heart rate in patients with COVID-19. Heart Rhythm 2020, 17, 1434–1438. [Google Scholar] [CrossRef]
-
Surawicz, B.; Knilans, T. Chou’s Electrocardiography in Clinical Practice, 6th ed.; Saunders: Philadelphia, PA, USA, 2008. [Google Scholar]
-
Rodger, M.; Makropoulos, D.; Turek, M.; Quevillon, J.; Raymond, F.; Rasuli, P.; Wells, P.S. Diagnostic value of the electrocardiogram in suspected pulmonary embolism. Am. J. Cardiol. 2000, 86, 807–809. [Google Scholar] [CrossRef]
-
Digby, G.C.; Kukla, P.; Zhan, Z.Q.; Pastore, C.A.; Piotrowicz, R.; Schapachnik, E.; Zareba, W.; Bayés de Luna, A.; Pruszczyk, P.; Baranchuk, A.M. The value of electrocardiographic abnormalities in the prognosis of pulmonary embolism: A consensus paper. Ann. Noninvasive Electrocardiol. 2015, 20, 207–223. [Google Scholar] [CrossRef]
-
Schott, J.P.; Mertens, A.N.; Bloomingdale, R.; O’Connell, T.F.; Gallagher, M.J.; Dixon, S.; Abbas, A.E. Transthoracic echocardiographic findings in patients admitted with SARS-CoV-2 infection. Echocardiography 2020. [Google Scholar] [CrossRef]
-
Helms, J.; Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Gandet, F.F.; et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med. 2020, 46, 1089–1098. [Google Scholar] [CrossRef]
-
Llitjos, J.F.; Leclerc, M.; Chochois, C.; Monsallier, J.M.; Ramakers, M.; Auvray, M.; Merouani, K. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J. Thromb. Haemost. 2020, 18, 1743–1746. [Google Scholar] [CrossRef]
-
Schaller, T.; Hirschbühl, K.; Burkhardt, K.; Braun, G.; Trepel, M.; Märkl, B.; Claus, R. Postmortem Examination of Patients with COVID-19. JAMA 2020, 323, 2518–2520. [Google Scholar] [CrossRef]
-
Wichmann, D.; Sperhake, J.P.; Lütgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Heinrich, F.; Mushumba, H.; Kniep, I.; Schröder, A.S.; et al. Autopsy Findings and Venous Thromboembolism in Patients with COVID-19. Ann. Intern. Med. 2020, 173, 268–277. [Google Scholar] [CrossRef]
-
Basso, C.; Leone, O.; Rizzo, S.; De Gaspari, M.; van der Wal, A.C.; Aubry, M.C.; Bois, M.C.; Lin, P.T.; Maleszewski, J.J.; Stone, J.R. Pathological features of COVID-19-associated myocardial injury: A multicentre cardiovascular pathology study. Eur. Heart J. 2020, 41, 3827–3835. [Google Scholar] [CrossRef]
-
Scuri, P.; Iacovoni, A.; Abete, R.; Cereda, A.; Grosu, A.; Senni, M. An unexpected recovery of patients with pulmonary arterial hypertension and SARS-CoV-2 pneumonia: A case series. Pulm. Circ. 2020, 10, 2045894020956581. [Google Scholar] [CrossRef] [PubMed]
-
Bikdeli, B.; Madhavan, M.V.; Jimenez, D.; Chuich, T.; Dreyfus, I.; Driggin, E.; Nigoghossian, C.D.; Ageno, W.; Madjid, M.; Guo, Y.; et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up. J. Am. Coll. Cardiol. 2020, 75, 2950–2973. [Google Scholar] [CrossRef] [PubMed]
-
Jain, S.S.; Liu, Q.; Raikhelkar, J.; Fried, J.; Elias, P.; Poterucha, T.J.; DeFilippis, E.M.; Rosenblum, H.; Wang, E.Y.; Redfors, B.; et al. Indications for and Findings on Transthoracic Echocardiography in COVID-19. J. Am. Soc. Echocardiogr. 2020, 33, 1278–1284. [Google Scholar] [CrossRef] [PubMed]
Créditos: Comité científico Covid